Proving Lines Parallel

Overview of problems

Example Set: A

Determine if any segments are parallel. Justify your conclusion by a postulate or theorem.
Example Set: B

Find the values of the variables that make the bold lines parallel
Find the values of the variables.

\[4x^2 \]

\[y \]

\[w \]

\[64 \]

\[t \]

\[a \]

\[b \]

\[120 \]

\[(x + y) \]

\[60 \]

\[(x - y) \]
Write a two column proof for the following:

Given: \(\angle 1 \cong \angle 3 \)

Prove that: \(l \parallel m \)
Example Set: A

Determine if any segments are parallel. Justify your conclusion by a postulate or theorem.

\(\overline{BC} \parallel \overline{AD} \)

Same-side interior angles are supplementary.

\(\overline{GF} \parallel \overline{HJ} \)
\(\overline{GH} \parallel \overline{FJ} \)

If alternate-interior angles are congruent, the lines are parallel.
Example Set: B

Find the values of the variables that make the bold lines parallel

\[l \parallel m \]

corresponding angles are \(\cong \), therefore the lines are \(\parallel \).

\[x = 40 \]
\[y = 80 \]
\[z = 100 \]
Find the values of the variables

\[x = 4 \]
\[y = 116 \]
\[w = 116 \]

\[x = 90 \]
\[y = 30 \]
Write a two column proof for the following

Given $\angle 1 \cong \angle 3$ Prove that $l \parallel m$

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle 1 \cong \angle 3$</td>
<td>Given</td>
</tr>
<tr>
<td>$\angle 3 \cong \angle 2$</td>
<td>Vertical \angles are \cong</td>
</tr>
<tr>
<td>$\angle 1 \cong \angle 2$</td>
<td>Trans. Property</td>
</tr>
<tr>
<td>$l \parallel m$</td>
<td>if two lines cut by a transversal and</td>
</tr>
<tr>
<td></td>
<td>corresponding angles are congruent - then</td>
</tr>
<tr>
<td></td>
<td>the lines are \parallel.</td>
</tr>
</tbody>
</table>